Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.323
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38593037

RESUMO

Thermodynamic therapy (TDT) based on oxygen-independent free radicals exhibits promising potential for the treatment of hypoxic tumors. However, its therapeutic efficacy is seriously limited by the premature release of the drug and the free radical scavenging effect of glutathione (GSH) in tumors. Herein, we report a GSH depletion and biosynthesis inhibition strategy using EGCG/Fe-camouflaged gold nanorod core/ZIF-8 shell nanoparticles embedded with azo initiator 2,2'-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH) and L-buthionine-sulfoximine (BSO) for tumor-targeting photothermal (PTT) and thermodynamic therapy (TDT). This nanoplatform (GNR@ZIF-8-AIPH/BSO@EGCG/Fe, GZABEF) endows a pH-responsive release performance. With the 67 kDa lamin receptor (67LR)-targeting ability of EGCG, GZABEF could selectively release oxygen-independent free radicals in tumor cells under 1064 nm laser irradiation. More importantly, Fe3+-mediated GSH depletion and BSO-mediated GSH biosynthesis inhibition significantly boosted the accumulation of alkyl radicals. In 4T1 cells, GZABEF induced cancer cell death via intracellular GSH depletion and GSH peroxidase 4 (GPX4) inactivation. In a subcutaneous xenograft model of 4T1, GZABEF demonstrated remarkable tumor growth inhibition (78.2%). In addition, excellent biosafety and biocompatibility of GZABEF were observed both in vitro and in vivo. This study provides inspiration for amplified TDT/PTT-mediated antitumor efficacy.

2.
Curr Med Chem ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38644711

RESUMO

The anti-aging effects of alpha-lipoic acid (αLA), a natural antioxidant synthesized in human tissues, have attracted a growing interest in recent years. αLA is a short- -chain sulfur-containing fatty acid occurring in the mitochondria of all kinds of eukaryotic cells. Both the oxidized disulfide of αLA and its reduced form (dihydrolipoic acid, DHLA) exhibit prominent antioxidant function. The amount of αLA inside the human body gradually decreases with age resulting in various health disorders. Its lack can be compensated by supplying from external sources such as dietary supplements or medicinal dosage forms. The primary objectives of this study were the analysis of updated information on the latest two-decade research regarding the use of αLA from an anti-aging perspective. The information was collected from PubMed, Wiley Online Library, Scopus, ScienceDirect, SpringerLink, Google Scholar, and clinicaltrials.gov. Numerous in silico, in vitro, in vivo, and clinical studies revealed that αLA shows a protective role in biological systems by direct or indirect reactive oxygen/nitrogen species quenching. αLA demonstrated beneficial properties in the prevention and treatment of many age-related disorders such as neurodegeneration, metabolic disorders, different cancers, nephropathy, infertility, and skin senescence. Its preventive effects in case of Alzheimer's and Parkinson's diseases are of particular interest. Further mechanistic and clinical studies are highly recommended to evaluate the wide spectrum of αLA therapeutic potential that could optimize its dietary intake for prevention and alleviation disorders related to aging.

3.
Biochemistry (Mosc) ; 89(Suppl 1): S148-S179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621749

RESUMO

The review is devoted to the mechanisms of free radical lipid peroxidation (LPO) initiated by reactive halogen species (RHS) produced in mammals, including humans, by heme peroxidase enzymes, primarily myeloperoxidase (MPO). It has been shown that RHS can participate in LPO both in the initiation and branching steps of the LPO chain reactions. The initiation step of RHS-induced LPO mainly involves formation of free radicals in the reactions of RHS with nitrite and/or with amino groups of phosphatidylethanolamine or Lys. The branching step of the oxidative chain is the reaction of RHS with lipid hydroperoxides, in which peroxyl and alkoxyl radicals are formed. The role of RHS-induced LPO in the development of human inflammatory diseases (cardiovascular and neurodegenerative diseases, cancer, diabetes, rheumatoid arthritis) is discussed in detail.


Assuntos
Halogênios , Peróxidos Lipídicos , Animais , Humanos , Peroxidação de Lipídeos , Radicais Livres , Oxirredução , Mamíferos
4.
Indian J Clin Biochem ; 39(2): 154-167, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577147

RESUMO

The production of harmful free radicals (H-FRs), especially those with oxygen or nitrogen atoms, depends on both internal and environmental causes. The negative effects of H-FRs are greatly alleviated by antioxidant protection. The harmful impact of oxidative stress, or OS, is brought on by a disparity between the defense mechanisms of the body and the creation of H-FRs. Aging is characterized by a slow decline in tissue and organ competence. Age-mediated pathologies start as an aberrant accumulation of H-FRs, which inhibit cells' capacity to divide, repair, and operate, based on the OS theorem of aging. The natural outcome of this situation is apoptosis. These conditions may include skeletal muscle dysfunction, cancer, cardiovascular, chronic hepatitis, chronic renal, and chronic pulmonary disorders. Given the substantial role that OS plays in the progression of many of these illnesses, antioxidant-based therapy may have a favorable impact on how these diseases progress. To ascertain the true efficacy of this therapy strategy, more research is necessary. The aim of this study is to provide an overview of the literature on this challenging issue that is attracting interest.

5.
Mar Drugs ; 22(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38535471

RESUMO

The aim of the present study was to investigate the use of Posidonia oceanica for making products beneficial for human health. Firstly, we demonstrated that the antioxidant defense (i.e., SOD and APX activity) of P. oceanica's living leaves (LP) has low efficacy, as they partly neutralize the produced H2O2. However, high H2O2 levels led LP to produce, as a response to oxidative stress, high phenolic content, including chicoric acid, p-coumaric acid, caftaric acid, trans-cinnamic and rutin hydrate, as shown by UHPLC-DAD analysis. In addition, LP extracts inhibited intestinal cancer cell proliferation. Moreover, P. oceanica's beach casts consisting of either Wet 'Necromass' (WNP) or Dry 'Necromass' (DNP) were used for preparing extracts. Both DNP and WNP exhibited antioxidant and antiproliferative activities, although lower as compared to those of LP extracts. Although both P. oceanica's meadows and beach casts are considered priority habitats in the Mediterranean Sea due to their high ecological value, legislation framework for beach casts forbidding their removal is still missing. Our results suggested that both LP and DNP could be utilized for the production of high-added value products promoting human health, provided that a sustainability management strategy would be applied for P. oceanica's meadows and beach casts.


Assuntos
Alismatales , Antioxidantes , Humanos , Peróxido de Hidrogênio , Estresse Oxidativo , Intestinos , Transformação Celular Neoplásica
6.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542238

RESUMO

Oxidative stress, characterized by an imbalance favouring oxidants over antioxidants, is a key contributor to the development of various common diseases. Counteracting these oxidants is considered an effective strategy to mitigate the levels of oxidative stress in organisms. Numerous studies have indicated an inverse correlation between the consumption of vegetables and fruits and the risk of chronic diseases, attributing these health benefits to the presence of antioxidant phytochemicals in these foods. Phytochemicals, present in a wide range of foods and medicinal plants, play a pivotal role in preventing and treating chronic diseases induced by oxidative stress by working as antioxidants. These compounds exhibit potent antioxidant, anti-inflammatory, anti-aging, anticancer, and protective properties against cardiovascular diseases, diabetes mellitus, obesity, and neurodegenerative conditions. This comprehensive review delves into the significance of these compounds in averting and managing chronic diseases, elucidating the key sources of these invaluable elements. Additionally, it provides a summary of recent advancements in understanding the health benefits associated with antioxidant phytochemicals.


Assuntos
Antioxidantes , Estresse Oxidativo , Humanos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Oxidantes/farmacologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Doença Crônica
7.
Appl Environ Microbiol ; 90(4): e0204423, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38483171

RESUMO

The ability of some white rot basidiomycetes to remove lignin selectively from wood indicates that low molecular weight oxidants have a role in ligninolysis. These oxidants are likely free radicals generated by fungal peroxidases from compounds in the biodegrading wood. Past work supports a role for manganese peroxidases (MnPs) in the production of ligninolytic oxidants from fungal membrane lipids. However, the fatty acid alkylperoxyl radicals initially formed during this process are not reactive enough to attack the major structures in lignin. Here, we evaluate the hypothesis that the peroxidation of fatty aldehydes might provide a source of more reactive acylperoxyl radicals. We found that Gelatoporia subvermispora produced trans-2-nonenal, trans-2-octenal, and n-hexanal (a likely metabolite of trans-2,4-decadienal) during the incipient decay of aspen wood. Fungal fatty aldehydes supported the in vitro oxidation by MnPs of a nonphenolic lignin model dimer, and also of the monomeric model veratryl alcohol. Experiments with the latter compound showed that the reactions were partially inhibited by oxalate, the chelator that white rot fungi employ to detach Mn3+ from the MnP active site, but nevertheless proceeded at its physiological concentration of 1 mM. The addition of catalase was inhibitory, which suggests that the standard MnP catalytic cycle is involved in the oxidation of aldehydes. MnP oxidized trans-2-nonenal quantitatively to trans-2-nonenoic acid with the consumption of one O2 equivalent. The data suggest that when Mn3+ remains associated with MnP, it can oxidize aldehydes to their acyl radicals, and the latter subsequently add O2 to become ligninolytic acylperoxyl radicals.IMPORTANCEThe biodegradation of lignin by white rot fungi is essential for the natural recycling of plant biomass and has useful applications in lignocellulose bioprocessing. Although fungal peroxidases have a key role in ligninolysis, past work indicates that biodegradation is initiated by smaller, as yet unidentified oxidants that can infiltrate the substrate. Here, we present evidence that the peroxidase-catalyzed oxidation of naturally occurring fungal aldehydes may provide a source of ligninolytic free radical oxidants.


Assuntos
Basidiomycota , Manganês , Polyporales , Lignina/metabolismo , Proteínas Fúngicas/metabolismo , Basidiomycota/metabolismo , Aldeídos , Peroxidases/metabolismo , Ácidos Graxos , Oxidantes
8.
Arch Microbiol ; 206(4): 153, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472387

RESUMO

3-Bromopyruvate (3BP), known for its potent anticancer properties, also exhibits remarkable efficacy against the pathogenic fungus Cryptococcus neoformans. So far it has been proven that the main fungicidal activity of 3BP is based on ATP depletion and a reduction of intracellular level of glutathione. The presented study includes a broad range of methods to further investigate the mechanistic effects of 3BP on C. neoformans cells. The use of flow cytometry allowed a thorough examination of their survival during 3BP treatment, while observations using electron microscopy made it possible to note the changes in cellular morphology. Utilizing ruthenium red, the study suggests a mitochondrial pathway may initiate programmed cell death in response to 3BP. Analysis of free radical generation and gene expression changes supports this hypothesis. These findings enhance comprehension of 3BP's mechanisms in fungal cells, paving the way for its potential application as a therapeutic agent against cryptococcosis.


Assuntos
Criptococose , Cryptococcus neoformans , Cryptococcus neoformans/metabolismo , Piruvatos/metabolismo , Piruvatos/farmacologia , Piruvatos/uso terapêutico , Criptococose/tratamento farmacológico , Apoptose
9.
Water Res ; 254: 121376, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489852

RESUMO

The present study provided an innovative insight into the formation mechanism of persistent free radicals (PFRs) during the pyrolysis of Fenton-conditioned sludge. Fenton conditioners simultaneously improve the dewatering performance of sewage sludge and catalyze the pyrolysis of sewage sludge for the formation of PFRs. In this process, PFRs with a total number of spins of 9.533×1019 spins/g DS could be generated by pyrolysis of Fenton-conditioned sludge at 400°C. The direct thermal decomposition of natural organic matter (NOM) fractions contributed to the formation of carbon-centered radicals, while the Maillard reaction produced phenols precursors. Additionally, the reaction between aromatic proteins and iron played a crucial role in the formation of phenoxyl or semiquinone-type radicals. Kinetics analysis using discrete distributed activation energy model (DAEM) demonstrated that the average activation energy for pyrolysis was reduced from 178.28 kJ/mol for raw sludge to 164.53 KJ/mol for Fenton conditioned sludge. The reaction factor (fi) indicated that the primary reaction in Fenton-conditioned sludge comprised of 27 parallel first-order reactions, resulting from pyrolysis cleavage of the NOM fractions, the Maillard reaction, and iron catalysis. These findings are significant for understanding the formation process of PFRs from NOM in Fenton-conditioned sludge and provide valuable insight for controlling PFRs formation in practical applications.


Assuntos
Ferro , Esgotos , Pirólise , Carbono , Cinética
10.
Heliyon ; 10(6): e27168, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509964

RESUMO

Various studies have demonstrated that employing ESR spin trapping to detect free radicals yields valuable insights into the vulnerability of bulk oils to oxidation. Consequently, this method can be employed to assess and compare the oxidative stability of different samples. This study was conducted to investigate the production and transformation of free radicals and trans isomers in linseed oil when subjected to different temperatures and durations of heating. These analyses revealed that the peak levels of free radicals PBN adducts were evident in linseed oil heated to 120 °C, while these levels decreased within 90 min and were absent at a higher temperature of 180 °C. Free radical PBN adducts were readily degraded at 180 °C. Levels of heat-induced trans isomers rose in linseed oil samples with rising temperatures but began to degrade at temperatures exceeding 240 °C partially. The content examination of these trans isomers revealed that the double bonds located at positions 9 and 15 exhibited a higher susceptibility to isomerization compared to the double bond at position 12. Furthermore, the values of k and Ea indicated that the synthesis of tri-trans-α-linolenic acid (TALAs) was more challenging compared to double-TALAs, and double-TALAs were more challenging than single-TALAs. This was because the tri-TALAs has a higher Ea value than the mono-TALAs and double-TALAs. The study has demonstrated that subjecting linseed oil to high-temperature heating leads to the production of free radicals and trans isomers. And PBN radical adduct is unstable at 180 °C and the double bonds at positions 9 and 15 could be isomerized more easily than that at position 12. These results indicated that controlling the formation of free radicals and single-TALAs isomers may be the key way to reduce the trans isomers of linolenic acid during cooking oil heating. In the follow-up study, we found that VE, VK3, ethyl caffeic acid and resveratrol had significant inhibitory effects on the formation of TALAs of linolenic acid, and the highest inhibitory rate of resveratrol with 5% addition could be reached to 30.86%. The above substances can be applied to the thermal processing of linseed oil to prevent the formation of TALAs.

11.
Biomedicines ; 12(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38540131

RESUMO

The antioxidant activity and the association of genistein with carcinogenesis are widely documented. Few studies directly measure the number of free radicals generated in cells, either during the action of factors stimulating their formation, e.g., ultraviolet (UV), or after exposure to antioxidants. The most suitable method for analysing free radicals is electron paramagnetic resonance (EPR) spectroscopy. The EPR method detects a paramagnetic centre with a single electron. Antioxidants neutralize free radicals, therefore, EPR analysis of antioxidant efficacy is as valuable and important as studying the paramagnetic centres of radicals. The aim of the study was to determine the influence of genistein on free radicals basal level and after UV exposure in breast cancer cell lines MCF7, T47D and MDA-MB-231 cell lines. The impact of genistein on cell viability was investigated at concentrations of 0.37 µM, 3.7 µM, 37 µM and 370 µM. Genistein at a concentration of 370 µM revealed a cytotoxic effect on the cells of all three tested breast cancer lines. Genistein at a concentration of 0.37 µM showed no significant effect on the cell viability of all tested breast cancer lines. Therefore, cell proliferation and antioxidant properties were examined using genistein at a concentration of 0.37 µM and 37 µM. X-band (9.3 GHz) EPR spectra of three different types of breast cancer cells (ER-positive, PR-positive and HER-2 negative: MCF7 and T47D and triple-negative MDA-MB-231) were compared. UV irradiation was used as a factor to generate free radicals in cells. The effect of free radical interactions with the antioxidant genistein was tested for non-UV-irradiated (corresponding to the basal level of free radicals in cells) and UV-irradiated cells. The levels of free radicals in the non-irradiated cells studied increased in the following order in breast cancer cells: T47D < MDA-MB-231 < MCF7 and UV-irradiated breast cancer cells: MDA-MB-231 < MCF7 < T47D. UV-irradiation altered free radical levels in all control and genistein-cultured cells tested. UV irradiation caused a slight decrease in the amount of free radicals in MCF7 cells. A strong decrease in the amount of free radicals was observed in UV-irradiated MDA-MB-231 breast cancer cells. The amount of free radicals in T47D cancer cells increased after UV irradiation. Genistein decreased the amount of free radicals in non-irradiated and UV-irradiated MCF7 cells, and only a weak effect of genistein concentrations was reported. Genistein greatly decreased the amount of free radicals in UV-irradiated T47D cancer cells cultured with genistein at a concentration of 3.7 µM. The effect of genistein was negligible in the other samples. Genistein at a concentration of 3.7 µM decreased the amount of free radicals in non-irradiated MDA-MB-231 cancer cells, but genistein at a concentration of 37 µM did not change the amount of free radicals in these cells. An increase in the amount of free radicals in UV-irradiated MDA-MB-231 cancer cells was observed with increasing genistein concentration. The antioxidant efficacy of genistein as a potential plant-derived agent supporting the treatment of various cancers may be determined by differences in signalling pathways that are characteristic of breast cancer cell line subtypes and differences in activation of oxidative stress response pathways.

12.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474196

RESUMO

Human immunodeficiency virus (HIV) is a major cause of death worldwide. Without appropriate antiretroviral therapy, the infection can develop into acquired immunodeficiency syndrome (AIDS). AIDS leads to the dysregulation of cell-mediated immunity resulting in increased susceptibility to opportunistic infections and excessive amounts of inflammatory cytokines. HIV-positive individuals also demonstrate diminished glutathione (GSH) levels which allows for increased viral replication and increased pro-inflammatory cytokine release, further contributing to the high rates of mortality seen in patients with HIV. Adequate GSH supplementation has reduced inflammation and slowed the decline of CD4+ T cell counts in HIV-positive individuals. We aim to review the current literature regarding the role of GSH in cell-mediated immune responses in individuals with HIV- and AIDS-defining illnesses.


Assuntos
Síndrome de Imunodeficiência Adquirida , Infecções por HIV , Humanos , HIV , Linfócitos T CD4-Positivos , Citocinas , Glutationa , Imunidade Celular
13.
Molecules ; 29(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474512

RESUMO

Quercetin is a flavonoid with a low molecular weight that belongs to the human diet's phenolic phytochemicals and nonenergy constituents. Quercetin has a potent antioxidant capacity, being able to capture reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive chlorine species (ROC), which act as reducing agents by chelating transition-metal ions. Its structure has five functional hydroxyl groups, which work as electron donors and are responsible for capturing free radicals. In addition to its antioxidant capacity, different pharmacological properties of quercetin have been described, such as carcinostatic properties; antiviral, antihypertensive, and anti-inflammatory properties; the ability to protect low-density lipoprotein (LDL) oxidation, and the ability to inhibit angiogenesis; these are developed in this review.


Assuntos
Flavonoides , Quercetina , Humanos , Quercetina/farmacologia , Antioxidantes/química , Radicais Livres/química , Oxirredução , Espécies Reativas de Oxigênio
14.
Antioxidants (Basel) ; 13(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397840

RESUMO

Ferroptosis is a special kind of programmed cell death that has been implicated in the pathogenesis of a large number of human diseases. It involves dysregulated intracellular iron metabolism and uncontrolled lipid peroxidation, which together initiate intracellular ferroptotic signalling pathways leading to cellular suicide. Pharmacological interference with ferroptotic signal transduction may prevent cell death, and thus patients suffering from ferroptosis-related diseases may benefit from such treatment. Butylated hydroxytoluene (BHT) is an effective anti-oxidant that is frequently used in oil chemistry and in cosmetics to prevent free-radical-mediated lipid peroxidation. Since it functions as a radical scavenger, it has previously been reported to interfere with ferroptotic signalling. Here, we show that BHT prevents RSL3- and ML162-induced ferroptotic cell death in cultured human neuroblastoma cells (SH-SY5Y) in a dose-dependent manner. It prevents the RSL3-induced oxidation of membrane lipids and normalises the RSL3-induced inhibition of the intracellular catalytic activity of glutathione peroxidase 4. The systemic application of BHT in a rat Alzheimer's disease model prevented the upregulation of the expression of ferroptosis-related genes. Taken together, these data indicate that BHT interferes with ferroptotic signalling in cultured neuroblastoma cells and may prevent ferroptotic cell death in an animal Alzheimer's disease model.

15.
J Food Sci ; 89(3): 1373-1386, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38343299

RESUMO

Onion is rich in bioactive and volatile compounds with antioxidant activity. However, the pungent odor of volatile compounds (VOCs) released restricts its use. The encapsulation of red onion extract by electrospinning is an alternative to mask this odor and protect its bioactive compounds. The main objective of this study was to encapsulate red onion bulb extract (ROE) in different concentrations into zein nanofibers by electrospinning and evaluate their thermal, antioxidant, and hydrophilicity properties. The major VOC in ROE was 3(2H)-furanone, 2-hexyl-5-methyl. Incorporating ROE into the polymeric solutions increased electrical conductivity and decreased apparent viscosity, rendering nanofibers with a lower average diameter. The loading capacity of ROE on fibers was high, reaching 91.5% (10% ROE). The morphology of the nanofibers was random and continuous; however, it showed beads at the highest ROE concentration (40%). The addition of ROE to the nanofibers increased their hydrophilicity. The nanofibers' antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl, nitric oxide, and hydroxyl radicals ranged from 32.5% to 57.3%. The electrospun nanofibers have the potential to protect and mask VOCs. In addition, they offer a sustainable alternative to the synthetic antioxidants commonly employed in the food and packaging industry due to their antioxidant activities.


Assuntos
Nanofibras , Zeína , Cebolas , Antioxidantes , Interações Hidrofóbicas e Hidrofílicas , Extratos Vegetais
16.
Animals (Basel) ; 14(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396549

RESUMO

This study explored the protective capacity of the essential oil (EO) of Cymbopogon citratus against oxidative stress induced by hydrogen peroxide (H2O2) and the inflammatory potential in zebrafish. Using five concentrations of EO (0.39, 0.78, 1.56, 3.12, and 6.25 µg/mL) in the presence of 7.5 mM H2O2, we analyzed the effects on neutrophil migration, caudal fin regeneration, cellular apoptosis, production of reactive oxygen species (ROS), and activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) after 96 h of exposure. A significant decrease in neutrophil migration was observed in all EO treatments compared to the control. Higher concentrations of EO (3.12 and 6.25 µg/mL) resulted in a significant decrease in caudal fin regeneration compared to the control. SOD activity was reduced at all EO concentrations, CAT activity significantly decreased at 3.12 µg/mL, and GST activity increased at 0.78 µg/mL and 1.56 µg/mL, compared to the control group. No significant changes in ROS production were detected. A reduction in cellular apoptosis was evident at all EO concentrations, suggesting that C. citratus EO exhibits anti-inflammatory properties, influences regenerative processes, and protects against oxidative stress and apoptosis.

17.
Glob Adv Integr Med Health ; 13: 27536130241231508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333068

RESUMO

Background: A pro-inflammatory metabolic state is key to the chronic disease epidemic. Clinicians' ability to use nutrients to balance inflammation via oxidant homeostasis depends on the quality of antioxidants research. Understanding the intersection of two prominent theories for how antioxidants quell inflammation-nutritional hormesis and oxidant scavenging-will enable therapeutic antioxidant use in clinical practice. Purpose: We sought to survey the literature to answer the question: has the hormetic response of exogenous antioxidants been studied in humans and if so, what is its effect Research Design: This review investigates the less well-established theory, nutritional hormesis. To understand the state of hormetic response research, we conducted a literature review describing the relationship between exogenous antioxidants, hormesis, and chronic disease. We used an adaptive search strategy (PubMed and Scopus), retrieving 343 articles, of which 218 were unique. Most studies reviewed the hormetic response in plant and cell models (73.6%) while only 2.2% were in humans. Results: Given the limited robust evidence, clinicians lack research-based guidance on the appropriate therapeutic dose of exogenous antioxidants or, more concerning, supra-physiological dosing via supplements. A critical hurdle in searching the literature is the lack of standardized nomenclature describing the hormetic effect, challenging the ability of clinicians to make informed decisions. Conclusion: Non-human research shows a biphasic, hormetic relationship with antioxidants but observational studies have yet to translate this into the complexities of human biochemistry and physiology. Therefore, we cannot accurately translate this into clinical care. To remedy this insufficiency, we suggest: (1) Improved data collection quality: controlled diet, standardized antioxidant measurements, bioavailability assessed via biomarkers; (2) Larger, harmonized datasets: research subject transparency, keyword standardization, consensus on a hormesis definition.

18.
Phytother Res ; 38(3): 1695-1714, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38318763

RESUMO

Withania somnifera, the plant named Indian ginseng, Ashwagandha, or winter cherry, has been used since ancient times to cure various health ailments. Withania somnifera is rich in constituents belonging to chemical classes like alkaloids, saponins, flavonoids, phenolic acids, and withanolides. Several chemotypes were identified based on their phytochemical composition and credited for their multiple bioactivities. Besides, exhibiting neuroprotective, immunomodulatory, adaptogenic, anti-stress, bone health, plant has shown promising anti-cancer properties. Several withanolides have been reported to play a crucial role in cancer; they target cancer cells by different mechanisms such as modulating the expression of tumor suppressor genes, apoptosis, telomerase expression, and regulating cell signaling pathway. Though, many treatments are available for cancer; however, to date, no assured reliable cure for cancer is made available. Additionally, synthetic drugs may lead to development of resistance in time; therefore, focus on new and natural drugs for cancer therapeutics may prove a longtime effective alternative. This current report is a comprehensive combined analysis upto 2023 with articles focused on bio-activities of plant Withania somnifera from various sources, including national and international government sources. This review focuses on understanding of various mechanisms and pathways to inhibit uncontrolled cell growth by W. somnifera bioactives, as reported in literature. This review provides a recent updated status of the W. somnifera on pharmacological properties in general and anti-cancer in particular and may provide a guiding resource for researchers associated with natural product-based cancer research and healthcare management.


Assuntos
Withania , Vitanolídeos , Vitanolídeos/farmacologia , Withania/química , Extratos Vegetais/farmacologia , Compostos Fitoquímicos
19.
Environ Pollut ; 345: 123561, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355081

RESUMO

Tire wear particles (TWPs), abundant in the aquatic environment, pose potential ecological risks, yet their implications have not been extensively studied. Rolling friction TWPs, sliding friction TWPs (S-TWPs) and cryogenically milled tire treads were used as research objects to study the ecotoxicity and difference of the above materials before and after aging in natural water (AS-TWPs) to the periphytic biofilm. The results showed that there were significant differences in the microstructure, surface elements, size, functional groups and environmentally persistent free radicals (EPFRs) of the three TWPs. After aging in natural water, the properties of the three TWPs mentioned above showed homogenization, but the EPFRs and reactive oxygen species (ROS) yield were different. After exposure to TWPs (10 mg L-1), total organic carbon and adenosine triphosphate decreased significantly (p < 0.05), and the production of extracellular polymeric substances (EPS) in the periphytic biofilm increased, in which the content of humic-like substance and proteins (tryptophan protein and humic acid-like substances) increased obviously. The increment of TB-EPS was higher than that of LB-EPS, and S-TWPs and AS-TWPs had the strongest promoting effect on EPS secretion. In addition, 10 mg L-1 TWPs caused massive cell death in the periphytic biofilm, which was more obvious in the S-TWPs and AS-TWPs exposure group. The toxic mechanism of TWPs promotes intracellular ROS accumulation and leads to the release of lactate dehydrogenase, which was attributed to the formation of EPFRs on the surface of TWPs and an increase in EPFRs intensity after aging in natural water. TWPs at environmentally relevant concentrations (0.1 mg L-1) had no biological toxicity to periphytic biofilms. This study fills the gap in the study of the surface structure characteristics of TWPs on the toxicity of periphytic biofilms, and is of great significance to the study of the aquatic toxicity mechanism of TWPs.


Assuntos
Biofilmes , Água , Espécies Reativas de Oxigênio , Matriz Extracelular de Substâncias Poliméricas
20.
J Basic Clin Physiol Pharmacol ; 35(1-2): 7-14, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38234261

RESUMO

Liver diseases are complex conditions, significantly influenced by oxidative stress. This comprehensive review assesses the therapeutic role of antioxidants like l-ascorbic acid and α tocopherol, beta-carotene, various minerals, and plant-based ingredients in mitigating oxidative stress-induced liver diseases. The manuscript delves into the critical influence of genetic and epigenetic factors on disease susceptibility, progression, and response to antioxidant therapy. While animal studies suggest antioxidant efficacy in liver disease treatment, human trials remain inconclusive, and caution is advised due to its possible potential pro-oxidant effects. Moreover, the interactions of antioxidants with other drugs necessitate careful consideration in the management of polypharmacy in liver disease patients. The review underscores the need for further research to establish the clinical benefits of antioxidants with understanding of possible antioxidant toxicities to elucidate the intricate interplay of genetic, epigenetic, and environmental factors in liver diseases. The aim is to foster a better understanding of the knowledge on hepatic disease management with judicial antioxidant therapies.


Assuntos
Antioxidantes , Hepatopatias , Animais , Humanos , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Estresse Oxidativo , alfa-Tocoferol/farmacologia , Hepatopatias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA